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Abstract

In this paper, we propose an efficient image representa-
tion strategy for addressing the task of small-scale person
re-identification. Taking advantages of being compact and
intuitively understandable, we adopt color names descrip-
tor (CND) as our color feature. To solve the inaccuracy
by comparing color names with image pixels in Euclidean
space, we propose a new approach – soft Gaussian mapping
(SGM), which uses a Gaussian model to bridge their seman-
tic gap. We further present a cross-view coupling learning
method to build a common subspace where the learned fea-
tures can contain the transition information among differ-
ent cameras. Experiments on the challenging small-scale
benchmark public datasets demonstrate the effectiveness of
our proposed method.

1. Introduction
Person re-identification is to match the persons across

multiple cameras with non-overlapping views [31, 19, 30].

It is challenging because the appearance of a person’s

surveillance images in different cameras may exhibit dra-

matic changes caused by illumination variation, as well as

different camera views and body poses. Recently, convolu-

tional neural network (CNN) is the main focus because of

its higher performance on large-scale data and end-to-end

manner [24, 35, 14, 4, 34]. But it still faces two problems:

(1) their performance requires sufficient labeled training

data, which is an extremely difficult task because of there

being significant changes in surveillance environments, and

(2) it is time-consuming for training. In view of this, we

shun ourselves away from deep learning methods on larger-

scale datasets and mainly consider the following task in this

paper: given a small amount of labeled training data, how

to efficiently match unseen persons?

Image representation is arguably the most fundamen-

tal task because it determines the upper limit of the over-

all performance. The appearance based low-level features

can be roughly divided into (1) color (color histogram
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pushed away

color names image pixels 
Figure 1. Examples of color names and image pixels in original

space (left) and transformed space by SGM (right). Image pixels

come from an image in VIPeR dataset.

[13, 12, 6, 29, 19] and color names based representation

[31, 33]), (2) texture, e.g., SILTP [15, 3], LBP [12] and Ga-

bor filters [9], (3) shape [20], and (4) gradient[19]. How-

ever, due to the fact that it is extremely complicated in un-

constrained surveillance conditions, no single feature can be

qualified completely for the task of person re-identification.

A common strategy is to combine the features with com-

plementary information to build richer signatures. In ex-

isting image representation methods, local maximal occur-

rence (LOMO) [15] and Gaussian of Gaussian (GOG) [19]

show impressive performance and are widely used. Both

of them contain color and texture information. However,

the dimensions of them are over 20,000, which take up a

lot of storage space and increase the training time. In [31],

Yang et al. propose salient color name based color descrip-

tor (SCNCD) which applies 16 pre-defined color names to

represent images. This kind of CND is not only compact

(dimension: 1000+) but also has shown good robustness to

illumination. Hence, we firstly concentrate on designing a

novel low-level color feature – CND, which has comple-

mentary information with LOMO and GOG.

We note that color names are pre-defined and image pix-

els are from surveillance cameras. Therefore, the under-

lying distribution of them are different, which leads to an

unreliable comparison in the original Euclidean space. This

is because Euclidean distance treats three color channels as

an isotropic one, and thus being unable to exactly reflect
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the underlying relationship between color names and image

pixels. In Fig. 1, when the Euclidean distance is regarded

as a dissimilarity measure between color names and image

pixels, we can see that there will be a set of image pixels

(circled by a blue ellipse) being assigned to the color name

yellow. In fact, the set of image pixels visually appear to-

tally different from color name yellow. This observation

reflects that although the image pixel stays ’close’ to one

color name, it does not definitely imply that it has the same

semantic information with the color name. The inaccurate

semantic measure between image pixels and color names

will further limit the performance of CND.

Different with Euclidean distance, Mahalanobis distance

takes into account the correlation among different dimen-

sions based on a Gaussian model, the covariance matrix

of which is estimated by aggregating them together. How-

ever, in real applications, the number of image pixels is far

larger than that of color names. As thus, the estimated co-

variance matrix may approach to reflecting the distribution

of image pixels while neglecting, to some extent, the color

names’ distribution. In addition, it assumes that image pix-

els and color names obey the same Gaussian model, which

is not the truth. To overcome it, we establish a connec-

tion between an image pixel and each color name by taking

their discrepancy as a new sample. By doing so, the imbal-

ance between image pixels and color names can be allevi-

ated. Since there are a large number of new samples, we

can reasonably model them using a Gaussian (according to

the central limit theorem). The inverse of Gaussian’s co-

variance matrix only reflects the difference between image

pixels and color names and can then be employed to bridge

their semantic gap. Fig. 1 shows that based on the Gaussian

model of discrepancy, the color name yellow is pushed away

while in the transformed space, the distance between an im-

age pixel and a color name is consistent with their semantic

relationship.

The contribution of this paper is as follows:

• We propose a novel and efficient method named soft

Gaussian mapping (SGM) to learn the description of

an image pixel over color names. It has complemen-

tary information with other color/texture features.

• We introduce cross-view coupling learning (CCL) to

build a common subspace with cross-view informa-

tion. Based on it, the learned image representation is

low-dimensional and discriminative.

2. Color Names based Image Representation
2.1. SGM for CND of a Pixel

Let Z be a set of three-dimensional image pixels, i.e.,

Z = [z1, z2, ..., zn] ∈ R3×n. Meanwhile, we assume

C = [c1, c2, ..., c16] ∈ R3×16 denotes a set of 16 three-

dimensional color names defined in [31]. To compute the

CND for a pixel, a probability distribution over color names

is often used. For example, SCNCD uses a saliency coding

with an exp(.) function and an index table is established by

taking all 256×256×256 colors as image pixels. However,

SCNCD compares the image pixels and color names in Eu-

clidean space, which is not unreliable.

To take the distribution into consideration, Mahalanobis

distance is well defined by using the inverse of covariance

matrix. It first creates a variable gM with the mean sub-

tracted and then assumes a zero-mean Gaussian model for

gM . But it is inappropriate to assume that image pixels

and color names follow the same distribution. To address

it, we create a novel variable g: the set of discrepancies

between image pixels zi, i = 1, 2, ..., n and color names

cj , j = 1, 2, ..., 16, i.e., gij = zi − cj . It is obvious that the

variable g is zero-mean. We then model the variable g by

using a Gaussian:

P ((zi, cj)|Θ) = σ exp(−1

2
gT
ijΣ

−1gij), (1)

where σ is a constant, i.e., (2π)−3/2|Σ|−1/2 with |Σ| being

the determinant of matrix Σ and Θ = (0,Σ) is the Gaus-

sian model parameter. Note that the set of discrepancies is

symmetric with zero mean. Σ is estimated by

Σ =
1

16n

n∑
i=1

16∑
j=1

gijg
T
ij , (2)

where Σ is a 3× 3 symmetric matrix. Σ−1/2 can be treated

as the mapping matrix.

With Eqs. 1 and 2, we can easily estimate the likelihood

of the image pixel zi belonging to the color name ci. This

estimated likelihood can be served as the color names de-

scriptor of an image pixel. It describes the membership of

an image pixel to color names from a probabilistic perspec-

tive. In [31, 25, 11, 16], an ’early cut-off’ is often used to

remove the adverse impact of dissimilar factor and can han-

dle the underlying manifold structure when local descrip-

tors are learned. To make it more generic, we defined our

soft gaussian mapping in a more flexible manner:

sj =

{
P ((zi, cj)|Θ) , if cj ∈ Nk(zi)
0 , else,

(3)

where Nk(zi) denotes k most similar color names of zi de-

fined by their similarities P ((zi, cj)|Θ). We further employ

sum normalization [25]

sT 1 = 1 (4)

to make the descriptor stable. In consequence, an image

pixel’s CND obtained by SGM can be taken as its probabil-

ity distribution over color names sj , j = 1, 2, ..., 16. Here,

’soft’ means that given an image pixel, several color names

are considered.
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Figure 2. Flowchart of extracting a robust color names descriptor in one strip.

2.2. Image Representation: from Pixel-Level to
Image-Level

Based on SGM, an image is converted to 16 soft Gaus-

sian maps, within each of which the global spatial layout

is still preserved. We then present a local-global pooling

scheme to characterize the signature of each stripe. It in-

cludes maxpooling in a 3×3 patch with a stride of 3, fol-

lowed by sumpooling in one stripe. By taking the maximum

in a local patch, small-scale deviation and mapping noises

can be reduced, thus enjoying, to some extent, invariance

properties [16]. Meanwhile, sumpooling is further utilized

to describe the statistical information in one stripe. To make

it owning the concept of probability distribution over color

names, sum normalization in Eq. 4 is also employed to form

the CND of a stripe (see Fig. 2). Then, the image-level fea-

ture is obtained via concatenating CNDs of all stripes.

2.3. Cross-View Coupling Learning

Due to the changes of viewing conditions in different

cameras and the high-dimensional image representation,

a lower subspace with cross-view information should be

learned from labeled training data. LDA is an efficient way

of learning a discriminative subspace w ∈ Rd×r, where d
and r are the dimensions of original feature and subspace,

respectively. Its objective is as follows:

J(w) = σE(w)/σI(w), (5)

where σE(w) and σI(w) denotes inter-personal and intra-

personal variances, respectively. Since both of inter-/intra-

personal variables have zero mean, we ignore the mean

while solving the objective like [15]. Eq. 5 means that in the

learned subspace, the intra-personal variance is suppressed

with respect to inter-personal variance. However, it only

considers difference of an image pair. Motivated by [28]

which deems that more discrimination can be expected on

account of both commonness and difference, we propose a

new subspace learning method using both commonness and

difference.

Given an image pair (x,y) from two different cameras,

we have commonness, i.e., m = x + y and difference i.e.,

e = x−y. The coupled variables m and e (zero-centered)

are negatively correlated, i.e., when ‖m‖2 is small, ‖e‖2 is

large and vice versa. Then, we expect to learn a subspace

with the following traits: (1) for e, the intra-personal vari-

ance is suppressed with respect to inter-personal variance

and (2) for m, the inter-personal variance is suppressed

with respect to intra-personal variance. That is to say we ex-

pect to learn a subspace where the same persons both stay

more compact (for e) and own higher similarities (for m)

than different persons. To that end, our objective is defined

to maximize Je(w) and Jm(w) jointly:{
Je(w) = σeE(w)/σeI(w)
Jm(w) = σmI(w)/σmE(w)

(6)

where σeE and σmE denote the inter-personal variance co-

variance matrices over e and m, respectively while σeI and

σmI denote the intra-personal variance covariance matrices

over e and m, respectively. According to [28], σeE equals

to σmE in the same subspace. Consequently, our objective

can be simplified to maximize J0(w)

J0(w) = σmI(w)/σeI(w), (7)

which reflects that when only similar pairs are considered,

we wish to learn a subspace where the intra-personal vari-

ance for e is suppressed with respect to intra-personal vari-

ance for m. We rewrite Eq. 7 to

J0(w) = wTΣmIw/wTΣeIw. (8)

The maximization of J0(w) can be solved by the gen-

eralized eigenvalue decomposition problem, i.e., the sub-

space is composed of the eigenvectors corresponding to r
largest eigenvalues of Σ−1

eI ΣmI . It has a closed-form solu-

tion. In consideration of the small sample problem [7], we

add a small regularizer to the diagonal elements of ΣeI to

avoid Σ−1
eI being singular. Finally, we calculate the similar-

ity score for any two images based on LSSL [28].

2.4. Run-time Complexity

Here, we discuss the run-time complexity of our pro-

posed method: (a) In SGM, the computation complexity
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Table 1. Comparison with SCNCD on VIPeR. Rank-1 results are

shown under different similarity learning methods.

Method KISSME LSSL XQDA CCL
SCNCD 35.0% 41.7% 40.0% 44.6%

SGM 40.9% 47.3% 44.4% 50.0%

of learning the covariance matrix in Eq. 2 is reduced to

O(n32), where n is larger than 16; (b) CCL requires the

computation of covariance matrix, matrix multiplication

and eigenvalue decomposition. Its computation complex-

ity is O(Nd2 + d3 + d3), where N denotes the number of

labeled persons.

3. Experiments
In this section, we evaluate our method on three popu-

lar small-scale benchmark datasets (VIPeR [8], PRID 450S

[21] and GRID [17]. When we compare with the state-of-

the-art methods, the best matching rate is shown in red, the

second best is in blue and our methods are shown in bold.

All experiments are evaluated on a PC with the 3.40 GHz

Core I7 CPU with 8 cores.

3.1. Datasets

VIPeR Dataset. VIPeR dataset has 632 persons captured

with two disjoint cameras in outdoor environments. There

is one image for each person in each camera view. It is

challenging due to arbitrary viewpoints, pose changes and

illumination variations. Images are mostly captured from 0

degree to 90 degree in Camera A while those from Camera

B are mostly from 90 degree to 180 degree. All images are

normalized to 128×48.

PRID450S Dataset. PRID450S dataset consists of 450

persons captured from two spatially disjoint camera views.

Each person has one image in each view. Due to differ-

ent viewpoint changes, background interference, partial oc-

clusion and illumination variations, it is also a challenging

dataset. All images are normalized to 168×80.

GRID Dataset. GRID dataset contains 1025 persons cap-

tured in a busy underground station. It is captured from 8

disjoint camera views. There are 250 person image pairs.

For each of them, there is one image in each camera view.

Besides, there are additional 775 gallery persons that are

different with the former 250 persons. All images are nor-

malized to 160×60 pixels.

3.2. Setup

Training/test. In experiments, we report our results in

the form of Cumulated Matching Characteristic (CMC)

curve [26]. On all datasets, we randomly choose 50% of

all persons for training while the remaining is used for test.

We conduct it for 10 random splits and the average results

are reported.

Features. As in [31], we use the image-foreground repre-

sentation and the same 4 color spaces including RGB, rgb,

l1l2l3 and HSV. When comparing with the state-of-the-art

approaches, we employ another two simple and commonly

used features: color histogram and SILTP.

Parameters. Unless otherwise specified, we empirically set

the parameters as follows: (1) We use 10 non-overlapping

stripes. (2) We set k to 5 for SGM. (3) We adopt 16 bins in

each channel for color histogram. (4) We project each type

of features to 100 subspace by CCL.

3.3. Evaluation on VIPeR

In this subsection, we make an evaluation of our method

on the widely used VIPeR dataset.

Comparison with SCNCD. It has been demonstrated that

SCNCD shows better performance than color histogram

and existing CND. In Table 1, we mainly compare SGM

with SCNCD under different similarity learning methods.

For a fair comparison, 10 non-overlapping stripes are used

for SCNCD, i.e., both of SGM and SCNCD are 1280-

dimensional features. Rank-1 results are shown. We can

observe that based on the same similarity learning method,

SGM outperforms SCNCD at least 4.4% at Rank 1. In ad-

dition, we observe that an improvement can be achieved by

using CCL instead of PCA used in LSSL and that CCL,

combined with LSSL, achieves the best results.

Euclidean v.s. Mahalanobis v.s. SGM distance. Our pro-

posed color names descriptor is simply named as SGM. We

compare SGM with SGM(Eu) and SGM(Ma) which employ

Euclidean and Mahalanobis distances under our framework,

respectively. Specifically, SGM(Eu) set the covariance ma-

trix Σ in Eq. 1 to be an identity matrix while SGM(Ma)

compute it by aggregating image pixels and color names

together. All of them use CCL for subspace learning and

LSSL for similarity learning. In Table 2, we list the compar-

ison results. In comparison with SGM(Eu), SGM(Ma) can

eliminate the inaccurate representation to a certain degree

and improves the results by 3.3% at Rank 1. By eliminating

the discrepancy in a better manner, SGM performs the best

at all Ranks.

3.4. Comparison with the State-of-the-art Methods

To make it comparable with the state-of-the-art ap-

proaches, we fuse SGM, SILTP and color histogram, named

by SSC, as image representations. They only cost 0.036s,

0.004s and 0.018s to represent an image of 128 × 48, re-

spectively. Then, we use CCL for subspace learning and

LSSL for similarity learning. .

On VIPeR and PRID450S datasets, we use the same mask as [31].

On others, we use the method in [18] to automatically generate the masks

(0.13s for an image of 160×60).
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Table 2. Evaluation of different distance methods: Euclidean, Ma-

halanobis and SGM on VIPeR.

Rank 1 5 10 20
SGM(Eu) 43.6% 73.3% 82.6% 90.0%

SGM(Ma) 46.9% 75.1% 84.0% 90.8%

SGM 50.0% 78.5% 88.1% 94.2%

Table 3. Comparison with the state-of-the-art methods on VIPeR

dataset. *denotes deep learning based methods.

Rank 1 5 10 20
NK3ML 99.8% - 100%% 100%

SCSP+PCN* 54.2% 82.8% 91.4% 99.1%

Spindle* 53.8% 74.1% 83.2% 92.1%

SSM 53.7% - 91.5% 96.1%

SCSP 53.5% 82.6% 91.5% 96.7%

STNs* 50.1% 73.1% 84.4% -

GOG 49.7% 79.7% 88.7% 94.5%

MetricEmsemble 45.9% 77.5% 88.9% 95.8%

LOMO 40.0% 68.1% 80.5% 91.1%

SCNCD+CH 37.8% 68.5% 81.2% 90.4%

SGM 50.0% 78.5% 88.1% 94.2%

SSC 59.2% 85.0% 92.1% 96.4%

State-of-the-art: VIPeR. VIPeR is a classic benchmark

dataset and may be most widely used for person re-

identification. The compared approaches include NK3ML

[1], SCSP+PCN [5], Spindle [32], SSM [2], SCSP [3],

STNs [10], GOG [19], LSSL [28], MetricEmsemble [20],

LOMO [15] and SCNCD+CH [31]. Among the previous

approaches in Table 3, NK3ML achieves the best result at

Rank 1. It is a metric learning method. SCSP+PCN ob-

tains the second best result at Rank 1. It combines the PCN

with SCSP which uses 6 types of basic features including

two types of HSV and LAB, as well as HOG and SILTP.

Compared with SCSP+PCN, our SSC improves the result

by 5.0% at Rank 1. Ours is mainly based on feature extrac-

tion. We can achieve better results when we use NK3ML

instead of LSSL to compute the similarity. We do not re-

port this results because the code of NK3ML has not been

released yet and we have not reproduced its result.

State-of-the-art: PRID450S. We compare our method

with the state-of-the-art approaches on PRID450S dataset,

including NK3ML [1], SSM [2], GOG [19], LOMO [15],

MED VL [27], CSL [22], TSR [23] and SCNCD+CH [31].

Among the previous approaches in Table 4, NK3ML [1]

achieves the best results at Rank 1 and SSM achieves the

best results at Ranks 10-20. SSM is based on the fuse of

GOG and LOMO. Note that LOMO is a combination of

Table 4. Comparison with the state-of-the-art methods on

PRID450S dataset.

Rank 1 5 10 20
NK3ML 73.4% - 96.3% 98.6%

SSM 73.0% - 96.8% 99.1%

GOG 68.4% 88.8% 94.5% 97.8%

LOMO 62.6% 85.6% 92.0% 96.6%

MED VL 45.9% 73.0% 82.9% 91.1%

TSR 44.9% 71.7% 77.5% 86.7%

CSL 44.4% 71.6% 82.2% 89.8%

SCNCD+CH 41.6% 68.9% 79.4% 87.8%

SGM 66.1% 86.9% 91.4% 95.3%

SSC 74.8% 91.4% 94.8% 97.2%

Table 5. Comparison with the state-of-the-art methods on GRID

dataset.

Rank 1 5 10 20
NK3ML 27.2% - 61.0% 71.0%

OL-MANS 30.2% - 49.2% 59.4%

SSM 27.2% - 61.1% 70.6%

GOG 24.7% 47.0% 58.4% 69.0%

SCSP 24.2% - 54.1% 65.2%

LOMO 16.6% - 41.8% 52.4%

SGM 26.6% 49.0% 57.9% 68.1%

SSC 31.9% 51.1% 59.6% 69.2%

joint histogram and SILTP. The second best result at Rank 5

is achieved by GOG which is based on pixel location, gra-

dient information and color information. Our SSC achieves

a new state-of-the-art result (74.8%) at Rank 1.

State-of-the-art: GRID. On GRID, the compared meth-

ods include NK3ML [1], OL-MANS [36], SSM [2], GOG

[19] SCSP [3] and LOMO [15]. All of them are traditional

feature / similarity learning methods. Among the previous

approaches in Table 5, OL-MANS achieves the best result

at Rank 1. Compared with OL-MANS, SSC improves the

rank-1 result by 1.7%.

4. Conclusion
In this paper, we propose a new method to learn the color

names descriptor for small-scale person re-identification. It

addresses the semantic gap between color names and image

pixels based on a Gaussian model and uses a local-global

pooling strategy to make the descriptors enjoying some

invariance properties. Finally, a new subspace learning

method based on positive samples is presented by a cross-

view analysis on commonness and difference. We make an

evaluation of our method on VIPeR and demonstrate its

effectiveness on three small-scale datasets.
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